



# **Course Specifications**

Muharram 1437 H

Institution: College of Engineering Academic Department: **Programme:** Course: Course Coordinator: Programme Coordinator: Course Specification Approved Date:

**Electrical Engineering Electrical Engineering** Signals and Systems Analysis Dr. Abdullah Al-Ahmadi Dr. Abdullah Almohaisen ..../ .... / ..... H

This form compatible with NCAAA 2013 Edition



#### **A. Course Identification and General Information**

| 1 - Course title: Signals and Sys      | stems         | Course Code:    | EE 221            |  |
|----------------------------------------|---------------|-----------------|-------------------|--|
|                                        |               |                 |                   |  |
| 2. Credit hours: (3,1,0)               |               |                 |                   |  |
| 3 - Program(s) in which the course     | is offered:   | Electrical      | Engineering       |  |
| 4 – Course Language: English           | -             |                 |                   |  |
| 5 - Name of faculty member respon      | sible for the | course:         | Dr. Abdullah Al-  |  |
|                                        |               |                 | Ahmadi            |  |
| 6 - Level/year at which this course i  | is offered:   | Spring se       | mester, sophomore |  |
|                                        |               | year            |                   |  |
| 7 - Pre-requisites for this course (if | any):         |                 |                   |  |
| Differential Equations MATH            | H 204         |                 |                   |  |
| 8 - Co-requisites for this course      | e (if any):   |                 |                   |  |
| • None                                 | × • • • •     |                 |                   |  |
| 9 - Location if not on main can        | npus:         |                 |                   |  |
| (                                      | -             |                 | )                 |  |
| 10 - Mode of Instruction (mark         | all that ap   | ply)            |                   |  |
| A - Traditional classroom              | Wh            | nat percentage? | 100 %             |  |
| B - Blended (traditional and online)   | Wh            | nat percentage? | %                 |  |
| D - e-learning                         | Wh            | nat percentage? | ······ %          |  |
| E - Correspondence                     | Wh            | nat percentage? | ······ %          |  |
| F - Other What percentage? %           |               |                 |                   |  |
| Comments:                              |               |                 |                   |  |
|                                        |               |                 |                   |  |

#### **B** Objectives

What is the main purpose for this course?

Students in this course are introduced to learn: Motivation and Applications, Signal Classifications, Signal Operations, Singularity Functions; Linear time-Invariant Systems and Convolution; Correlation; Fourier Series and Transform for continuous and discrete time signals; Applications; Laplace transform and applications; Introduction to z-transform.

Briefly describe any plans for developing and improving the course that are being implemented:

None





#### **C.** Course Description

#### **1.** Topics to be Covered

| List of Topics                           | No. of<br>Weeks | Contact<br>Hours |
|------------------------------------------|-----------------|------------------|
| Introduction and basic system properties | 3               | 12               |
| Linear time-invariant systems.           | 2               | 8                |
| Continuous-time Fourier transform        | 2               | 8                |
| Discrete-time Fourier transform.         | 2               | 8                |
| Sampling                                 | 2               | 8                |
| Laplace transform                        | 2               | 8                |
| Z-transform.                             | 2               | 8                |

#### 2. Course components (total contact hours and credits per semester):

|                  | Lecture | Tutorial | Laboratory | Practical | Other: | Total |
|------------------|---------|----------|------------|-----------|--------|-------|
| Contact<br>Hours | 45      | 15       | 0          | 0         | 0      | 60    |
| Credit           | 3       | 0        | 0          | 0         | 0      | 3     |

## **3.** Additional private study/learning hours expected for students per week.

2





#### 4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

|            | NQF Learning Domains<br>And Course Learning Outcomes                                           | Course<br>Teaching<br>Strategies | Course<br>Assessment<br>Methods |  |
|------------|------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|--|
| 1.0        | Knowledge                                                                                      |                                  |                                 |  |
| 1.1        | ••••••                                                                                         | •••••                            |                                 |  |
| 1.2        | •••••                                                                                          | •••••                            | •••••                           |  |
| 1.3        |                                                                                                |                                  |                                 |  |
| 1.4        |                                                                                                | •••••                            | •••••                           |  |
| 1.5        |                                                                                                | •••••                            | •••••                           |  |
| 1.6        |                                                                                                | •••••                            |                                 |  |
| 2.0        | Cognitive Skills                                                                               |                                  |                                 |  |
| 2.1        | Analyze the response of linear time-invariant                                                  | Lecture, small                   |                                 |  |
| ~ ~        | systems using the convolution and correlation.                                                 | group work,<br>research          | Standardized                    |  |
| 2.2        | Use the principles of sampling of continuous-                                                  | activities, lab                  | exams, Oral                     |  |
| 22         | time signals.                                                                                  | demonstrations,                  | exams, Micro                    |  |
| 2.3        | Analyze the response of linear time-invariant<br>systems in the frequency domain using Fourier | projects and                     | projects                        |  |
|            | transforms                                                                                     | presentation                     |                                 |  |
| 30         | Internersonal Skills & Responsibility                                                          | presentation                     |                                 |  |
| 3.0        | Interpersonal oknis & Responsionity                                                            |                                  |                                 |  |
| 40         | Communication Information Technology Nume                                                      | rical                            |                                 |  |
| <b>4.0</b> | Construct basic continuous and discrete-time                                                   | Lecture.                         |                                 |  |
| 701        | signals.                                                                                       | research                         |                                 |  |
| 4.2        | Determine the properties of basic system                                                       | activities, lab                  | Standardized                    |  |
|            | properties.                                                                                    | demonstrations,                  | exams, Oral                     |  |
| 4.3        | <b>Represent time-domain signals using Fourier</b>                                             | studies.                         | exams, Micro                    |  |
|            | representations                                                                                | memorization                     | projects                        |  |
| 4.4        | Determine the Laplace and z-transforms.                                                        | and individual presentation      |                                 |  |
| 5.0        | Psychomotor                                                                                    |                                  |                                 |  |
| 5.1        |                                                                                                |                                  |                                 |  |

#### **5.** Schedule of Assessment Tasks for Students During the Semester:

|   | Assessment task | Week Due | Proportion<br>of Total<br>Assessment |
|---|-----------------|----------|--------------------------------------|
| 1 | First Exam      | 7        | 20%                                  |





| 2 | Second Exam          | 12            | 20% |
|---|----------------------|---------------|-----|
| 3 | Quizzes              | Weeks<br>6,11 | 15% |
| 4 | Homework assignments | Week 13       | 5%  |
| 5 | Final                | Week 15       | 40% |





#### **D. Student Academic Counseling and Support**

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)

- 1. Weekly office hours.
- 2. Exam solving in class.
- 3. Feedback from each student.
- 4. Weekly guidelines on student performance.
- 5. Instructor webpage.

#### **E. Learning Resources**

- **1. List Required Textbooks:** 
  - V. Oppenheim, Signals & Systems, Prentice Hall, 1998.
- 2. List Essential References Materials:
  - •
- 3. List Recommended Textbooks and Reference Material:
  - Haykin and Veen, Signals & Systems, John Wiley, 1998.
- 4. List Electronic Materials:
  - None
- **5. Other learning material:** 
  - ٠

#### **F. Facilities Required**

#### 1. Accommodation

• 25 seats in the classroom.

#### 2. Computing resources

• Laptop

#### 3. Other resources

•

- .....
- •

#### **G** Course Evaluation and Improvement Processes

#### **1** Strategies for Obtaining Student Feedback on Effectiveness of Teaching:

د ام ی ۵ المدمعة

- Completion course evaluation questionnaire.
- Classroom observations to measure student behavior through how well the student groups are interacting in-class activity and how well the in-class activity went.

### 2. Other Strategies for Evaluation of Teaching by the Program/Department Instructor:

- Faculty Peer Assessment.
- •

#### **3. Processes for Improvement of Teaching:**

- Plan: The instructor will develop a strategy for teaching
- Do: The strategy will be implemented for one semester.
- Study: The experiences of the students will be collected through a survey.
- Act: Effective teaching strategies will be implemented and revised as more experiences are gained.
- 4. Processes for Verifying Standards of Student Achievement
  - Check marking of a sample of examination papers.

**5** Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement:

- Continuous improvement is a circular process, encompassing student assessment, course planning and design, implementation, evaluation, and revision.
- A feedback from all relevant assessment tools must be considered in the continuous process of course objectives refinement and assessment.
- Continuous process for reviewing feedback from student on the quality of the course and
- planning for improvement.

#### Course Specification Approved Department Official Meeting No ( ..... ) Date .... / ..... *H*

#### **Course's Coordinator**

#### **Department Head**



|                       |       | جامعة المجمعة         |       |
|-----------------------|-------|-----------------------|-------|
| Name :<br>Signature : |       | Name :<br>Signature : |       |
| Date :                | / / H | Date :                | / / H |

