

Course Specifications

Course Title:	Coding and Cryptography Theory	
Course Code:	MTH 445	
Program:	B.Sc in Mathematics	
Department:	Mathematics Department	
College:	College of Science at Al- Zulfi	
Institution:	Majmaah University	

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities6	
1.Learning Resources	7
2. Facilities Required	7
G. Course Quality Evaluation7	
H. Specification Approval Data8	

A. Course Identification

1. Credit hours: 3(2+1)		
2. Course type		
a. University College Department College Others		
b. Required		
3. Level/year at which this course is offered: 7th		
4. Pre-requisites for this course (if any): MTH444		
5. Co-requisites for this course (if any): N/A		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	22	70 %
2	Blended	8	20 %
3	E-learning	3	10 %
4	Correspondence		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	25
2	Laboratory/Studio	0
3	Tutorial	15
4	Others (specify) Seminars and presentations	15
	Total	

B. Course Objectives and Learning Outcomes

1. Course Description

On successful completion of the module, students should be able to:

- Know the importance of the coding theory
- How he can make some elementary codes
- Know all the tools used in linear codes
- Extract the generator of a code
- Construct the dual code of a given linear code
- Correct some errors induced by the canal
- Determine the Hamming distance between two words code

2. Course Main Objective

The course is self-contained and doesn't need to be changed. However, the computer can be used intensively to make the course sufficiently clear and this needs to install many software as Mathematica, Macauley, Matlab and other...

	urse Learning Outcomes CLOs	Aligned-PLOs
1	Knowledge and Understanding	
1.1	We give an overview on the history of the cryptography and introduce the symmetric cryptography.	We first introduce new notions, , we establish the attached properties, we
1.2	We introduce The RSA coding and the notion of code correcting.	give and prove different theorems related to those
1.3	We introduce linear codes, the Hamming codes, dual codes, generating Matrix and many notions related to linear codes .	notions. Finally, we construct new examples and concepts. To well fix
1.4	We study the mathematical ideas underlying modern coding theory and cryptography, including algebra, number theory and probability theory	the principal facts, homework is proposed.
1.5	We present the basic theory and objectives of each of these steps, together with the basics of information theory.	
2	Skills :	-
2.1	The ability to extract the generator of a code.	
2.2	The ability to Construct the dual code of a given linear code	
3	Values:	
3.1		
3.2		
3.3		
3		

C. Course Content

No	List of Topics	Contact Hours
1	Account	6h
2	Study the Z / nZ ring	3h
3	History of cryptography	3h
4	Modern symmetric encryption	3h
5	Additional topics in account theory	3h

6	RSA encryption.	3h
7	7 Introduction to Corrected Encryption 3h	
8	Homing and linear cipher binary spaces	бh
9	Binary code and linear code	3h
10	Linear code applications	6h
11	The linear code and protection of information and data	3h
	Total	42

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding	I	
1.1	Study the arithmetic on \mathbb{Z} , the ring $\mathbb{Z} / n\mathbb{Z}$ and then the field $\mathbb{Z} / p\mathbb{Z}$		
1.2	Give an overview on the history of the cryptography and introduce the symmetric cryptography.		-MCQ on principal theorems
1.3	Introduce The RSA coding and the notion of code correcting.	We first introduce new notions, give	-Proving additional notions that can
1.4	Introduce and study linear codes, the Hamming codes, dual codes, generating	examples from the simple ones (numbers sets) to those related	been elaborated from the general study
1.5	Introduce and study modern coding theory and cryptography, including algebra, number theory and probability theory.	to cryptography. we establish the attached properties, we give and prove different	-In general we introduce a short question to control the ability of the
1.6	Address the efficient error free and secure delivery of information using binary data streams.	theorems related to those notions.	tudent to make the elationship between all the parts of the
1.7	Construct new finite fields in view to be applied to coding and cryptography.		course.
1.8	Employ channel coding to minimize the effects of errors.		
2.0	Skills		
2.1	The ability to extract the generator of a code.	Explanations and examples given in lectures.	
2.2	The ability to Construct the dual code of a given linear code.	Guidance and supervision of the work developed in tutorial classes.	Short questions and discussion during the tutorial class+ short quizzes.
2.3	To have the ability to make different codes.	By using many examples	
2.4	To have the ability to encrypt and decrypt texts.		
3.0	Values		

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
3.1	The students should be able to formulate and solve mathematical problems such as:	Direct teaching: Lectures Aimed teaching: Discovery and oral questions Indirect teaching: Cooperative Learning	 Homework Quiz Midterms Final Exams
3.2			

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	1	Midterm 1	7th week
2	3	Homewor k	Through of semester
3	4	Quizzes	Through of semester
4	5	Electronic Test	13th week
5	6	Presentati on	Through of semester
6	7	Final exam	End of semester
7	1	Midterm 1	7th week
8			

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

1- 3-office hours per week in the lecturer schedule.

2- The contact with students by e-mail and website.

3- activation of the virtual classrooms and academic guidance via Black Board LMS.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks- An Introduction to information communication and cryptogramNorman L.Biggs-Springer Undergraduate Mathematics Series 1- Introduction to Cryptography with Coding Theory-Trappe- Pearson-Lawrence C. Washington Wide.	
Essential References Materials	Cryptography: Theory and practice –Doug Stinson- Originally published-Editor Doug Stinson-1995.
Electronic Materials	http://www.gap-system.org/Releases/index.html
Other Learning Materials	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classroom with capacity of 30-students.Computer Lab of Mathematics Department
Technology Resources (AV, data show, Smart Board, software, etc.)	Mathematical software packages like MATHEMATICA
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	https://www.intmath.com/plane-analytic- geometry/intro.php http://mathworld.wolfram.com/topics/Geometry.html

G. Course Quality Evaluation

Evaluators	Evaluation Methods
Students/ internal committee	Direct (Students evaluation electronically organized by Deanship of registration and admission)/ Verification of students' papers
Staff members (Peer Reviewer)	Indirect (Frequent meetings consultation among the teaching staffs)
Staff members (course coordinators)	Direct (Meeting between course coordinators and the tutors)
	Students/ internal committee Staff members (Peer Reviewer) Staff members (course

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Mathematics Department	
Reference No.	27	
Date	8/8/1442 H -21/3/2021 G	

Head of Department

Dr. Muqrin Almuqrin

Children

