

Course Specifications

Course Title:	Rings and Fields	
Course Code:	MTH 444	
Program:	B.Sc in Mathematics	
Department:	Mathematics Department	
College:	College of Science at Al- Zulfi	
Institution:	Majmaah University	

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes4	
1. Course Description	4
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	7
E. Student Academic Counseling and Support7	
F. Learning Resources and Facilities7	
1.Learning Resources	7
2. Facilities Required	8
G. Course Quality Evaluation8	
H. Specification Approval Data9	

A. Course Identification

1. Credit hours: 4(3+1)		
2. Course type		
a. University College Department College Others		
b. Required		
3. Level/year at which this course is offered: 7th		
4. Pre-requisites for this course (if any): MATH343		
5. Co-requisites for this course (if any): N/A		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	32	70 %
2	Blended	9	20 %
3	E-learning	4	10 %
4	Correspondence		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	25
2	Laboratory/Studio	0
3	Tutorial	15
4	Others (specify) Seminars and presentations	15
	Total	

B. Course Objectives and Learning Outcomes

1. Course Description

On successful completion of the module, students should be able to:

- Determine the ideals of a given ring
- Determine the factor ring of a ring modulo an ideal.
- Determine the splitting field of a polynomial.
- Characterize prime and maximal ideal in many particular rings.
- To establish that two rings are isomorphic
- Prove that a ring is a field.
- Determine the ideals of a factor ring
- Easily work with polynomials as element of A[X]
- To practice the Euclidian division in K[X] and determine the gcd lcm of polynomials.
- Do calculations inside a finite field.
- Construct finite fields from a field of polynomial over a finite field and an irreducible polynomial.
- Draw the table of $Fp[X]/\langle P(X) \rangle$.

2. Course Main Objective

The course is self-contained and doesn't need to be changed. However, the computer can be used intensively to make the course sufficiently clear and this needs to install many software as Mathematica, Macauley, Matlab and other...

3. Course Learning Outcomes

CLOs		Aligned-PLOs	
1	Knowledge and Understanding		
1.1	State the axioms defining a ring, Integral domain, invertible element, a field, an ideal, prime and maximal ideals and consequences.	We first introduce new notions, give examples from the simple ones	
1.2	Deduce simple statements from these axioms.	(numbers sets) to those	
۱,۱ ۱,٤	Determine the image and the kernel of a ring homomorphism.	functional sets, we establish the attached	
١,٥	State, prove and apply some of the classical theorems of elementary Rings and Fields Theory.	properties, we give and prove different theorems	
١,٦	Apply Bezout's theorem and Gauss's theorem in Euclidian ring in particular K[X].	related to those notions. Finally, we construct new	
1.7	Construct new finite fields in view to be applied to coding and cryptography.	examples and concepts. To well fix the principal facts,	
1.8	Study the extension of fields	nomework is proposed.	

	CLOs	Aligned-PLOs
2	Skills :	
2.1	The ability to recognize a ring, ideal and field structure.	C2
2.2	The ability to design new rings by constructing factor ring, to define their ideals and to distinguish the principal, the prime and the maximal ones.	C2
3	Values:	
3.1		
3.2		
3.3		[]
3		

C. Course Content

No	List of Topics	
1	Rings and group of units of a ring, Group of automorphisms of a ring.	8h
2	Ideals and the quotient rings. Principal rings. Prime and Maximal ideals. Fields, Field of quotients of an integral domain. Characteristic of a ring	12h
3	Direct sum of rings. Modules over a ring	8h
4	Euclidian rings. The ring of polynomials A[X1,X2,,Xn] over a ring A. Roots of polynomials over a Field K.	8h
5	Finite Fields and Application	4h
6	Extension of fields. Simple and finite extensions of fields.	8h
7	Splitting fields and Algebraic Closures. Finite fields.	8h
	Total	56

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	State the axioms defining a ring, Integral domain, invertible element, a field, an ideal, prime and maximal ideals and consequences.	We first introduce new notions, give examples from the simple ones (numbers	-MCQ on principal theorems -Proving additional notions that can
1.2	Deduce simple statements from these axioms.	sets) to those related to matrices, functional	been elaborated from the general
1.3	Provide examples of different simple ring structures.	sets, we establish the attached properties,	study -In general we
1.4	Determine the image and the kernel of a ring homomorphism.	we give and prove different theorems	introduce a short question to control
1.5	State, prove and apply some of the classical theorems of elementary Rings and Fields Theory.	related to those notions. Finally, we construct new	the ability of the student to make the relationship between

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.6	Apply Bezout's theorem and Gauss's theorem in Euclidian ring in particular K[X].	examples and concepts. To well fix the principal facts,	all the parts of the course.
1.7	Construct new finite fields in view to be applied to coding and cryptography.	homework is proposed.	
2.0	Skills		
2.1	The ability to recognize a ring, ideal and field structure.	Explanations and examples given in lectures.	
2.2	The ability to design new rings by constructing factor ring, to define their ideals and to distinguish the principal, the prime and the maximal ones.	Guidance and supervision of the work developed in tutorial classes.	
2.3	To have the ability to construct integral domain as a factor of a ring by a prime ideal, and a field as a factor ring of a ring by a maximal ideal.	By using many examples	
2.4	The ability to make calculus the ring of polynomials and to be able to determine the gcd of two polynomial and to determine if they are coprime using Bezout's theorem or any related theorem .		Short questions and discussion during the tutorial class+ short quizzes.
2.5	To be able to apply Gauss's theorem and in some cases to determine the roots of a polynomial.	Some examples	
2.6	To be able to manipulate the principal ring,	Apply almost all theorems to the case of polynomial ring.	
2.7	To be able to construct finite fields as a factor ring of polynomials on finite field by an irreducible ideal.	Construct finite fields from simple ones.	
2.8	To be able to draw the tables of F_pn[X]/ <p></p>		
3.0	Values		
3.1	The students should be able to formulate and solve mathematical problems such as:	Direct teaching: Lectures Aimed teaching: Discovery and oral questions Indirect teaching: Cooperative Learning	HomeworkQuizMidtermsFinal Exams
3.2		·	

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	1	Midterm 1	7th week
2	3	Homewor k	Through of semester
3	4	Quizzes	Through of semester
4	5	Electronic Test	13th week
5	6	Presentati on	Through of semester
6	7	Final exam	End of semester
7	1	Midterm 1	7th week
8			

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- 1- 4-office hours per week in the lecturer schedule.
 - Sunday 10-12.
 - Wednesday 12-15.
- 2- The contact with students by e-mail and website.

3- activation of the virtual classrooms and academic guidance via Black Board LMS.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	 Groups, Rings and Fields, J David A.R. Wallace, Springer, 2001, ISBN 1540763772-0, 13: 9783540761778 Introduction to Finite Fields and their Applications, R. Lidl and H. Niederreiter, Cambridge University Press, 1994, ISBN 9781139172769, 9780521460941.
--------------------	---

	-Commutative Ring Theory (Cambridge Studies in Advanced	
	Mathematics), H. Matsumura, Miles Reid, June 30, 1989 ISBN-	
	10: 0521367646 ISBN-13: 978-0521367646.	
Essential References	-Commutative Algebra: with a View Toward Algebraic Geometry	
Materials	(Graduate Texts in Mathematics). David Eisenbud, March 1, 1999	
	ISBN-10: 0387942696 ISBN-13: 978-0387942698.	
	-A Guide to Groups, Rings, and Fields, Fernando Q. Gouvêa,	
	Dolciani Mathematical Expositions, 2012, ISBN: 0883853558	
Electronic Materials	http://www.gap-system.org/Releases/index.html	
Other Learning Materials		

2. Facilities Required

Item	Resources	
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classroom with capacity of 30-students.Computer Lab of Mathematics Department	
Technology Resources (AV, data show, Smart Board, software, etc.)	Mathematical software packages like MATHEMATICA	
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	https://www.intmath.com/plane-analytic- geometry/intro.php http://mathworld.wolfram.com/topics/Geometry.html	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment	Students/ internal committee	Direct (Students evaluation electronically organized by Deanship of registration and admission)/ Verification of students' papers
Extent of achievement of course learning outcomes	Staff members (Peer Reviewer)	Indirect (Frequent meetings consultation among the teaching staffs)
Quality of learning resources.	Staff members (course coordinators)	Direct (Meeting between course coordinators and the tutors)

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

H. Specification Approval Data

Council / Committee	Mathematics Department
Reference No.	27
Date	8/8/1442 H -21/3/2021 G

Head of Department

Dr. Muqrin Almuqrin

Chlor

