

# **Course Specifications**

| Course Title: | Partial Differential Equation    |  |
|---------------|----------------------------------|--|
| Course Code:  | MTH 323                          |  |
| Program:      | BS-Mathematics                   |  |
| Department:   | Mathematics                      |  |
| College:      | College of Sciences, AlZulfi     |  |
| Institution:  | Majmaah University, Saudi Arabia |  |







# **Table of Contents**

| A. Course Identification                                                                    |   |
|---------------------------------------------------------------------------------------------|---|
| 6. Mode of Instruction (mark all that apply)                                                | 3 |
| B. Course Objectives and Learning Outcomes                                                  |   |
| 1. Course Description                                                                       | 3 |
| 2. Course Main Objective                                                                    | 3 |
| 3. Course Learning Outcomes                                                                 | 3 |
| C. Course Content                                                                           |   |
| D. Teaching and Assessment4                                                                 |   |
| 1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment<br>Methods | 4 |
| 2. Assessment Tasks for Students                                                            | 4 |
| E. Student Academic Counseling and Support5                                                 |   |
| F. Learning Resources and Facilities5                                                       |   |
| 1.Learning Resources                                                                        | 6 |
| 2. Facilities Required                                                                      | 6 |
| G. Course Quality Evaluation6                                                               |   |
| H. Specification Approval Data7                                                             |   |

# A. Course Identification

| <b>1. Credit hours:</b> 4(3+1)                                                                |  |  |
|-----------------------------------------------------------------------------------------------|--|--|
| 2. Course type                                                                                |  |  |
| <b>a.</b> University College Department $$ Others                                             |  |  |
| <b>b.</b> Required $$ Elective                                                                |  |  |
| 3. Level/year at which this course is offered: 1 <sup>st</sup> Semester /1 <sup>st</sup> year |  |  |
| 4. Pre-requisites for this course (if any): MTH 202                                           |  |  |
|                                                                                               |  |  |
|                                                                                               |  |  |
| 5. Co-requisites for this course (if any):                                                    |  |  |
|                                                                                               |  |  |
|                                                                                               |  |  |

#### 6. Mode of Instruction (mark all that apply)

| No | Mode of Instruction   | <b>Contact Hours</b> | Percentage |
|----|-----------------------|----------------------|------------|
| 1  | Traditional classroom | 20                   | 45 %       |
| 2  | Blended               | 18                   | 40 %       |
| 3  | E-learning            | 7                    | 15 %       |
| 4  | Correspondence        |                      |            |
| 5  | Other                 |                      |            |

#### 7. Contact Hours (based on academic semester)

| No | Activity          | Contact Hours    |
|----|-------------------|------------------|
| 1  | Lecture           | 45               |
| 2  | Laboratory/Studio | 0                |
| 3  | Tutorial          | 10               |
| 4  | Others (specify)  | ( <sup>5</sup> ) |
|    | Total             | 60               |

### **B.** Course Objectives and Learning Outcomes

#### 1. Course Description

This course covers the fundamental concepts of partial differentiation and the formation and classification of theses equations by degree and order and linearity, then solution of these equations by means of direct integration or some transformations like Laplace.

#### 2. Course Main Objective

This course aims to give an introduction to partial differential equations. The student enrolled in this course should have a back-ground in Calculus Theory.

1-deduce the differential equations for a family of curves or surfaces

2- solve first-order quasi-linear partial differential equations

3- recognize characteristic curves and canonical forms for second-order partial differential equations

4- apply the Fourier transform to solve boundary value problems

# **<u>3. Course Learning Outcomes</u>**

|     | CLOs                                                                                                                                                                                                                                                           |    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1   | Knowledge:                                                                                                                                                                                                                                                     |    |
| 1.3 | The students should be able to Acquire and outline mathematical<br>knowledge and skills in fundamental concepts of sets and relations on<br>them and their properties, and the basic terminology of Boolean algebra<br>and some manipulation operations on it. | K3 |
| 2   | Skills :                                                                                                                                                                                                                                                       |    |
| 2.2 | The students should be able to Demonstrate the work independently and within a team via finding and designing, Euler circuits for example.                                                                                                                     | S2 |
| 3   | Competence:                                                                                                                                                                                                                                                    |    |
| 3.3 | The students should be able to Critically interpret numerical and graphical data in graph theory.                                                                                                                                                              | C3 |

# **C.** Course Content

| No    | List of Topics                                                                                                                                                         | Contact<br>Hours |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1     | Partial derivation rules Resolution of partial differential equations using direct integration Resolution of partial differential equations by separation of variables | 9                |
| 2     | Formation of partial differential equations from an algebraic equation                                                                                                 | 9                |
| 3     | First-order quasi-linear partial differential equations                                                                                                                | 9                |
| 4     | Second-order partial differential equations                                                                                                                            | 9                |
| 5     | Application of the Fourier transform in solving boundary value problems                                                                                                | 9                |
| Total |                                                                                                                                                                        |                  |

# **D.** Teaching and Assessment

# 1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

| Code | Course Learning Outcomes                                                                                                                                                                                                                                                | Teaching Strategies                                                                                                                                                              | Assessment Methods                                                                                                   |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 1.0  | Knowledge                                                                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                                      |
| 1.3  | The students should be able to<br>Acquire and outline mathematical<br>knowledge and skills in fundamental<br>concepts of sets and relations on them<br>and their properties, and the basic<br>terminology of Boolean algebra and<br>some manipulation operations on it. | Direct teaching:<br>Inquiry-based<br>instruction<br>PowerPoints and<br>discussions<br>Aimed teaching:<br>Discovery and oral<br>questions<br>Indirect teaching:<br>Peer Learning. | <ul> <li>Homework</li> <li>Quiz</li> <li>Midterms</li> <li>Final Exams</li> <li>E-exam</li> <li>Oral Exam</li> </ul> |
| 2.0  | Skills                                                                                                                                                                                                                                                                  |                                                                                                                                                                                  |                                                                                                                      |
| 2.2  | The students should be able to Demonstrate the work independently                                                                                                                                                                                                       | Direct teaching:<br>Lectures<br>Aimed teaching:                                                                                                                                  | <ul><li>Homework</li><li>Quiz</li><li>Midterms</li></ul>                                                             |

| Code | Course Learning Outcomes                                                                                | <b>Teaching Strategies</b>                                                                                                          | Assessment Methods                                                                |
|------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|      | and within a team via finding and designing, Euler circuits for example.                                | Discovery and oral<br>questions<br><b>Indirect teaching</b> :<br>Peer Learning                                                      | <ul> <li>Final Exams</li> <li>E-exam</li> <li>Oral Exam</li> </ul>                |
| 3.0  | Competence                                                                                              |                                                                                                                                     |                                                                                   |
| 3.3  | The students should be able to<br>Critically interpret numerical and<br>graphical data in graph theory. | Direct teaching:<br>Lectures<br>Aimed teaching:<br>Discovery and oral<br>questions<br>Indirect teaching:<br>Cooperative<br>Learning | <ul> <li>Homework</li> <li>Quiz</li> <li>Midterms</li> <li>Final Exams</li> </ul> |
| 3.2  |                                                                                                         |                                                                                                                                     |                                                                                   |

#### 2. Assessment Tasks for Students

| # | Assessment task*             | Week Due              | Percentage of Total<br>Assessment Score |
|---|------------------------------|-----------------------|-----------------------------------------|
| 1 | Quiz 1                       | 4 <sup>th</sup> Week  | 2.5%                                    |
| 2 | Assignment/Home Work 1       | 5 <sup>th</sup> Week  | 2.5%                                    |
| 3 | Mid Term 1                   | 7 <sup>th</sup> Week  | 20%                                     |
| 4 | Quiz 2                       | 9 <sup>th</sup> Week  | 2.5%                                    |
| 5 | Assignment /Home Work 2      |                       | 2.5%                                    |
| 6 | Class Activities/Discussions | 10 <sup>th</sup> Week | 5%                                      |
| 7 | Mid Term 2                   | 12 <sup>th</sup> Week | 20%                                     |
| 8 | Electronic Test              | 13 <sup>th</sup> Week | 5%                                      |
| 9 | Final Exam                   |                       | 40%                                     |
|   | Total                        |                       | 100%                                    |

\*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

#### E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- 1- 4-office hours per week in the lecturer schedule.
  - Sunday 10-12.
  - Wednesday 10-12.
- 2- The contact with students by e-mail and website.

3- activation of the virtual classrooms and academic guidance via Black Board LMS.

# **F. Learning Resources and Facilities**

#### **1.Learning Resources**

| Required Textbooks• 1. E.C. Zachmanoglou and D.W. Thoe, "Introduce<br>Partial Differential Equations with Applications"<br>Publication, 1986. |                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Essential References<br>Materials                                                                                                             | 1 G.F. Carrier and C.E. Pearson, Partial Differential<br>Equations: Theory and Technique, Academic Press, 1976. |
| Through of semester<br>Electronic Materials                                                                                                   | <ul> <li>http://www.wolfram.com/</li> <li>http://www.mathworks.com/</li> </ul>                                  |
| Other Learning<br>Materials                                                                                                                   |                                                                                                                 |

#### 2. Facilities Required

| Item                                                                                                                      | Resources                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Accommodation<br>(Classrooms, laboratories, demonstration<br>rooms/labs, etc.)                                            | <ul><li>Classroom with capacity of 30-students.</li><li>Computer Lab of Mathematics Department</li></ul> |
| <b>Technology Resources</b><br>(AV, data show, Smart Board, software,<br>etc.)                                            | Mathematical software packages like<br>MATHEMATICA                                                       |
| Other Resources<br>(Specify, e.g. if specific laboratory<br>equipment is required, list requirements or<br>attach a list) | http://mathworld.wolfram.com/classroom/classes/Calcul<br>usII.html                                       |

# **G.** Course Quality Evaluation

| Evaluation<br>Areas/Issues                        | Evaluators                          | Evaluation Methods                                                                                                                            |
|---------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Effectiveness of teaching and assessment          | Students/ internal committee        | Direct (Students evaluation<br>electronically organized by<br>Deanship of registration and<br>admission)/ Verification of<br>students' papers |
| Extent of achievement of course learning outcomes | Staff members (Peer Reviewer)       | Indirect (Frequent meetings<br>consultation among the<br>teaching staffs)                                                                     |
| Quality of learning resources.                    | Staff members (course coordinators) | Direct (Meeting between<br>course coordinators and the<br>tutors)                                                                             |
|                                                   |                                     |                                                                                                                                               |

**Evaluation areas** (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

# H. Specification Approval Data

| Council / Committee | Mathematics Department |
|---------------------|------------------------|
| Reference No.       | 27                     |
| Date                | 8/8/1442 H-21/3/2021 G |

Head of Department

Dr. Muqrin Almuqrin

Chin

