

Course Specifications

Course Title:	Mathematical Methods
Course Code:	MTH 322
Program:	BS-Mathematics
Department:	Mathematics
College:	College of Sciences, AlZulfi
Institution:	Majmaah University, Saudi Arabia

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities6	
2. Facilities Required	7
G. Course Quality Evaluation7	
H. Specification Approval Data7	

A. Course Identification

1. Credit hours: 4 (3+1)		
2. Course type		
a. University College Department 🗸 Others		
b. Required V Elective		
3. Level/year at which this course is offered: Second Level/First year		
4. Pre-requisites for this course (if any):		
MTH 221		
5. Co-requisites for this course (if any):		
N/A		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	45	75%
2	Blended	15	25%
3	E-learning		
4	Correspondence		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	45
2	Laboratory/Studio	0
3	Tutorial	30
4	Others (specify)	30
	Total	105

B. Course Objectives and Learning Outcomes

1. Course Description

1. Course Description

- Series Solutions of Ordinary differential equations with variable coefficients- Inner product space of - self-adjoint operator- SturmLiouville theory- Orthogonal polynomials and special functions(Gamma, Beta, Legendre, Bessel, Hermit, Lagurre)- Generalized theory of Fourier series - Fourier integral.

2. Course Main Objective

The student has the knowledge of

- 1- Series Solutions of Ordinary differential equations with variable coefficients
- 2- Inner product space of functions- self-adjoint operator
- 3- Sturm-Liouville theory
- 4- Orthogonal polynomials and special functions (Legender, Hermite, gamma, Beta, Bessel)
- 5- Generalized theory of Fourier series Fourier integral.

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge:	
1.1	Define and write the basic fundamentals in Mathematical Methods	K4
	Series Solutions of Ordinary differential equations with variable	
	coefficients- Inner product space of functions-self-adjoint operator-	
1.2	Recall and reproduce fundamentals and concepts in Mathematical	K4
	Methods Sturm-Liouville theory- Orthogonal polynomials.	
1.3	Outline mathematical concepts to models of real world problems	K4
	Special functions (Legender- Hermite, Gamma, Beta, Bessel)-	
	Generalized theory of Fourier series- Fourier integral.	
1.4		
2	Skills :	
2.1	The students will Construct mathematical arguments and proofs and apply the	S4
	underlying unifying structures of Mathematical Methods	
2.2	Students will have the ability to Develop and explain critical thinking skills to	S4
	solve problems that can be modeled mathematically.	
2.3		
2		
3	Competence:	
3.1	Enable students to analyses the mathematical problems.	C2
3.2		
3.3		
3		

C. Course Content

No	List of Topics	Contact Hours
1	Series Solutions of Ordinary differential equations with variable	12
-	coefficients.	12
2	Inner product space of functions- self-adjoint operator	8
3	Sturm-Liouville theory	8
4	special functions (gamma, beta)	8
5	Orthogonal polynomials and special functions (Legendre, Hermite, ,	16
5	Bessel)	10
6	Generalized theory of Fourier series - Fourier integral.	8
	Total	60

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge		
1.1	Define and write the basic fundamentals in Mathematical Methods Series Solutions of Ordinary differential equations with variable coefficients- Inner product space of functions-self-adjoint operator.	Begin each topic with the explanation of various basic ideas giving plenty of examples Start each section by general idea and the benefit of it. Demonstrate the course information and principles through lectures.	Exams Midterms Final examination.
1.2	Recall and reproduce fundamentals and concepts in Mathematical Methods Sturm- Liouville theory- Orthogonal polynomials.	Provide several ways to deal with the exercises.	Home work. Classroom activities Working in groups.
1.3	Outline mathematical concepts to models of real world problems Special functions (Legender- Hermite, Gamma, Beta, Bessel)-Generalized theory of Fourier series- Fourier integral.	Solve some examples during the lectures.	Continuous discussions with the students during the lectures.
2.0	Skills		
2.1	The students will Construct mathematical arguments and proofs and apply the underlying unifying structures of Mathematical Methods	Provide main ways to deal with exercises.	Oral and written exams Quizzes.
2.2	Students will have the ability to Develop and explain critical thinking skills to solve problems Enable students to	Ask the student to attend lectures for practice solving problem.	Discussion of how to simplify or analyses some problems.

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
	analyses the mathematical problems.		
•••			
3.0	Competence		
3.1	State the Physical problems by mathematical method	Ask the student to attend lectures for practice solving problem.	Doing homework. Check the problems solution.
3.2			

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Midterm Exam 1	7	20
2	Midterm Exam 2	12	20
3	Homework	Through of semester	5
4	Team work and Presentation	Through of semester	5
5	Quizzes	Through of semester	5
6	E-Tests	12	5
7	Final Examination	15	60
	Total		100

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

- 1- Office hours per week in the lecturer schedule.
- 2- The contact with students by e-mail and website.
 - 1- Activation of the virtual classrooms and academic guidance via Black Board LMS.

F. Learning Resources and Facilities

	1. Fourier Analysis and its Applications, Geral B. F Fourier Folland, Pacific Grove, 1992.
Required Textbooks	 Walter Rudin: Principle of Mathematical Analysis, 2nd ed., New York, 1964.
Essential References Materials	

Electronic Materials	 http://WWW.cmi.univ-mrs.fr// http://WWW.arxiv.org// http://WWW.Ims.ac.u/
Other Learning Materials	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classroom with capacity of 20 students Library
Technology Resources (AV, data show, Smart Board, software, etc.)	Blackboard
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment	Students/ internal committee	Direct (Students evaluation electronically organized by Deanship of registration and admission)/ Verification of students' papers
Extent of achievement of course learning outcomes	Staff members (Peer Reviewer)	Indirect (Frequent meetings consultation among the teaching staffs)
Quality of learning resources.	Staff members (course coordinators)	Direct (Meeting between course coordinators and the tutors)

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Mathematics Department
Reference No.	27
Date	8/8/1442 H-21/3/2021 G Head of Department

Dr. Muqrin Almuqrin

Ching

