

Course Specifications

Course Title:	Data Mining
Course Code:	CSI 512
Program:	Computer Sciences and Information Technology
Department:	Computer Science and Information
College:	Science at Al-Zulfi
Institution:	Majmaah

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support7	
F. Learning Resources and Facilities7	
1.Learning Resources	7
2. Facilities Required	7
G. Course Quality Evaluation8	
H. Specification Approval Data8	

A. Course Identification

1. Credit hours: 3			
2. Course type			
a. University College Department	Others		
b. Required Elective			
3. Level/year at which this course is offered: Level 9			
4. Pre-requisites for this course (if any): CSI 314 Database			
5. Co-requisites for this course (if any): Nil			

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	44	80 %
2	Blended	3	5 %
3	E-learning	3	5 %
4	Correspondence	3	5 %
5	Other	3	5 %

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	30
2	Laboratory/Studio	30
3	Tutorial	-
4	Others (specify)	-
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

This course introduces an introduction to the fundamentals of data mining

principlesand a basic understanding of data analysis techniques required to tackle

real-world, data-rich problems in business and academia, including:

- Data set acquisition, cleaning, ,aggregation , dimension reduction , FeatureSelection and extraction based on PCA.
- Similarity and dissimilarity of objects
- Exploratory data analysis and visualization
- Data classification methods: Decision tree, Rule-based, Bayes' theorem, K-Nearest Neighbor and Support Vector Machine (AVM).

020

Clustering methods: K-means

2. Course Main Objective

- 1. Students will develop relevant programming abilities.
- 2. Students will demonstrate proficiency with statistical analysis of data.
- 3. Students will develop the ability to build and assess data-based model classifications.
- 4. Students will execute data analysis with professional software.
- 5. Students will demonstrate skill in data analysis and management

3. Co	urse Learning Outcomes	
	CLOs	Aligned PLOs
1	Knowledge and Understanding	
1.1	Acquire familiarity with the basic concepts of data mining.	
1.2	Identify the problems and tasks including dataset collection, data preprocessing and data analysis.	
1.3	An understanding of problems solvable and an ability to attack them from a statistical perspective.	К2
1.4	An understanding of when to use supervised and unsupervised learning methods on labeled and unlabeled data-rich classification/clustering problems.	
2	Skills :	
2.1	Distinguish between different kinds of data and identify challenges related tobig data.	C 1
2.2	The ability to create/extract features from big data and applications in Matlab.	51
2.3	An ability to extract rules involving relations, trees for numeric prediction, instance based classification.	
2.4	Familiarity with the Matlab various tools needed to classify and clusteringbig data based on using supervised and unsupervised learning methods.	S2
3	Values:	
3.1	An ability to implement and use rules for numeric prediction, instance basedrepresentation and cluster data.	
3.2	Applying proficiency with statistical analysis of data using Matlab.	
3.3	Applying supervised and unsupervised statistical learning methods on datasetusing Matlab tools.	C1
3.1	An ability to implement and use rules for numeric prediction, instance basedrepresentation and cluster data.	

C. Course Content

No	List of Topics		
1	Data Mining Introduction o What is data mining o Data mining functionalities o Data mining applications Data mining systems	8	
oure	o Specifications		245
ours	e Specifications	والعلولي والعلولي	

2	Data Preparationo Descriptive data summarizationo Data cleaningo Data integration and transformationo Data preprocessing : Dimension reduction & Feature extractiono Data discretization and concept hierarchy generationLab: Data analysis applications with Weka software or Matlab.	8
3	Data Warehouse and OLAP o Data warehouse introduction o Multidimensional data model Data cube and OLAP	8
4	Frequent Pattern Mining o Basic concepts o Efficient and scalable frequent item set mining methods o Correlation analysis o Sequential pattern mining o Graph and tree mining Lab: Data exploration applications with Weka software or Matlab.	12
5	Classification and Prediction o Decision tree induction o Bayesian classification o Support vector machines o K-Nearest neighbor methods o Other classification methods o Performance evaluation Lab: Advanced topics and applications with Weka software or Matlab.	12
6	Clustering Analysis o Partition methods o Hierarchical methods o Density-based methods o Outlier analysis	12
	Lab: Advanced topics and applications with Weka software or Matlab Total	60

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Acquire familiarity with the basic concepts of data mining .	Direct Teaching:	- Homework tasks
1.2	Identify the problems and tasks including dataset collection, data preprocessing and data analysis.	Lectures, PowerPoint slides and discussion.	QuizMidtermsFinal Exam
1.3	An understanding of problems solvable andan ability to attack		E-learningInternet search

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
	them from a statistical	Aimed Teaching	- Oral Exam
	perspective.	Discovery and Oral	
	An understanding of when to use	Questions	
1.4	supervisedand unsupervised		
	learning		
	methods on		
	rishelessification/elustering problems		
2.0	Skille		
2.0	Distinguish between different kinds		
2.1	of data		
	and identify challenges related to big		
	data.		
2.2	The ability to create/extract	Indirect Teaching:	
	features from	Brainstorming - Free	
	big data and applications in Matlab.	Discovery –Inquiry	- HW Exercises
	An ability to extract rules		- Lab Exam
2.3	involvingrelations, trees for		- Oral Exam
	numeric prediction,		- Presentations
	instance based classification.		
	Familiarity with the Matlab		
2.4	various toolsneeded to classify and		
	clustering big data		
	based on using supervised and		
2.0	Volves		
3.0	An ability to implement and use		
3.1	rules fornumeric		
5.1	nrediction instance		
	hased	~	Introduce group
	representation and cluster data.	Course Project: (Work group)	project and case
3.2	Applying proficiency with		study approachesto
	statistical	chucal uninking and	have an experience
	analysis of data using Matlab.	solutions	in problem solving
	Applying supervised and	5010110115.	situations.
3.3	unsupervised		
	statistical learning methods on dataset		
	using viatiab tools.		

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Homework 1	2	2%
2	QUIZ 1	3	5%
3	Homework 2	4	2%
4	QUIZ 2	5	5%
5	Midterm 1	6	10%
6	Homework 3	7	2%
7	QUIZ 3	8	5%
8	Homework 4	9	2%

#	Assessment task*	Week Due	Percentage of Total Assessment Score
9	QUIZ 4	10	5%
10	Midterm 2	11	10%
11	Lab Exam/ Project Evaluation	14	12%
12	Final Exam	16	40%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- Determine meeting appointments for the weak' students to solve their problems and give them academic advices.
- One office hour daily
- Dealing a workshops.
- Motivate students

F. Learning Resources and Facilities

1.Learning Resources	1.	.Lea	rning	Resources
----------------------	----	------	-------	-----------

Required Textbooks	Tan, P., Steinbach, M., and Kumar, V., Introduction to Data Mining, Pearson Education, Inc., 2006.
Essential References Materials	Han, J., Kamber, M., Pei, J., Data Mining: Concepts and Techniques, Third Edition, 2011
Electronic Materials	https://hanj.cs.illinois.edu/bk3/
Other Learning Materials	Matlab toolboxes: Data mining/ Data Science / Learning machine

2. Facilities Required

Item	Resources	
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classroom - Laboratory	
Technology Resources (AV, data show, Smart Board, software, etc.)	Data show – Smart Board	
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	Matlab software – Weka – Python Programming	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
1. Questionnaires(courseevaluation)filledbystudentsandacquiredelectronicallybytheUniversity2.Students-facultymanagementmeetings	Students	Indirect Assessment
3. Departmental internal review of the course.	Department Council	Questionnaires
 Discussion with the industrial partnersto enhance the courses in order to meet their needs. 	Stockholders	Meetings
 Midterms and Final Exam Project Evaluation 	Course CoordinatorStaff	Direct Assessment

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

H. Specification Approval Data	Gir Barry
Council / Committee	Jaeola J
Reference No.	Majmash University
Date	

- الالي والع