

# **Course Specifications**

| Course Title: | Computational Methods                      |
|---------------|--------------------------------------------|
| Course Code:  | CSI 444                                    |
| Program:      | Computer Sciences & Information Technology |
| Department:   | Computer Science and Information           |
| College:      | Science at Al-Zulfi                        |
| Institution:  | Majmaah                                    |







# **Table of Contents**

| A. Course Identification                                                                    |   |
|---------------------------------------------------------------------------------------------|---|
| 6. Mode of Instruction (mark all that apply)                                                | 3 |
| B. Course Objectives and Learning Outcomes                                                  |   |
| 1. Course Description                                                                       | 3 |
| 2. Course Main Objective                                                                    | 3 |
| 3. Course Learning Outcomes                                                                 | 4 |
| C. Course Content                                                                           |   |
| D. Teaching and Assessment5                                                                 |   |
| 1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment<br>Methods | 5 |
| 2. Assessment Tasks for Students                                                            | 5 |
| E. Student Academic Counseling and Support6                                                 |   |
| F. Learning Resources and Facilities6                                                       |   |
| 1.Learning Resources                                                                        | 7 |
| 2. Facilities Required                                                                      | 7 |
| G. Course Quality Evaluation7                                                               |   |
| H. Specification Approval Data8                                                             |   |

### A. Course Identification

| 1. Credit hours:3                                            |  |  |
|--------------------------------------------------------------|--|--|
| 2. Course type                                               |  |  |
| <b>a.</b> University College Department $$ Others            |  |  |
| <b>b.</b> Required $$ Elective                               |  |  |
| 3. Level/year at which this course is offered: Level 7       |  |  |
| 4. Pre-requisites for this course (if any): CSI 314 Database |  |  |
|                                                              |  |  |
|                                                              |  |  |
| 5. Co-requisites for this course (if any):                   |  |  |
| None                                                         |  |  |
|                                                              |  |  |

#### 6. Mode of Instruction (mark all that apply)

| No | Mode of Instruction   | <b>Contact Hours</b> | Percentage |
|----|-----------------------|----------------------|------------|
| 1  | Traditional classroom | 42                   | 70%        |
| 2  | Blended               | 6                    | 10%        |
| 3  | E-learning            | 6                    | 10%        |
| 4  | Correspondence        | 0                    | 0%         |
| 5  | Other                 | 6                    | 10%        |

#### 7. Contact Hours (based on academic semester)

| No | Activity          | Contact Hours |
|----|-------------------|---------------|
| 1  | Lecture           | 30            |
| 2  | Laboratory/Studio | 20            |
| 3  | Tutorial          | 10            |
| 4  | Others (specify)  |               |
|    | Total             | 60            |

### **B.** Course Objectives and Learning Outcomes

#### 1. Course Description

The current course provides powerful understanding and manipulation of what is called approximate/numerical solutions. The exact solution, in many practical cases, is not only difficult to be reached, but it may be impossible to find it. Therefore it was the need to look for effective algorithms to establish these stable, and convergent approximate solutions. These algorithms will handle important several topics concerned with: Numerical Differentiation, Root location (Bracketing Methods, Opened Methods), Numerical Integrations, Numerical Solution of Linear Systems of Equations, Curve Fitting, Interpolation, Numerical Solution of Ordinary and Partial Differential Equations.

#### 2. Course Main Objective

These algorithms will handle important several topics concerned with: Numerical Differentiation, Root location (Bracketing Methods, Opened Methods), Numerical Integrations, Numerical Solution of Linear Systems of Equations, Curve Fitting, Interpolation, Numerical Solution of Ordinary and Partial Differential Equations.

### **3.** Course Learning Outcomes

|            | CLOs                                                                     | Aligne<br>d-PLOs |
|------------|--------------------------------------------------------------------------|------------------|
| 1          | Knowledge:                                                               | •                |
| 1.1        | Explain the mathematical theory underlying numerical                     |                  |
|            | methods for solutions of the concerned problems.                         |                  |
| 1.2        | Match correctly the appropriate techniques of solutions                  | K1               |
|            | with the concerned problems.                                             |                  |
| 1.3        | Categorizing problems into appropriate complexity classes.               |                  |
| 2          | Skills :                                                                 |                  |
| 2.1        | Identify the essential mathematics relevant to computer science          |                  |
| 2.2        | Perform error and stability analysis to investigate applicability of     | <b>G1</b>        |
|            | numerical methods for solving the concerned problems.                    | S1               |
| 2.3        | Analyze and evaluate the solution's Efficiency and effectiveness.        |                  |
| 2.4        | Develop an appropriate numerical scheme.                                 |                  |
| 3          | الكفاءات :Competence                                                     |                  |
| 3.1        | Illustrate a plan to attack a problem and solve it numerically           |                  |
| 3.2        | Use the available commercial software systems/packages in                |                  |
|            | application to the suggested solution                                    |                  |
| 3.3        | Choose suitable algorithms and software to suit specific problems.       | C6               |
| 3.4        | Analyze the solution's sensitivity due to small changes in the problem's |                  |
|            | parameter.                                                               |                  |
| 3.5        | Cooperative working in groups inside the class, or/and efficient         |                  |
|            | participation in take-home-assignments.                                  |                  |
|            | Allow them to feel "involved" in the discussion, rather than simply      |                  |
| 3.6        |                                                                          |                  |
| 3.6        | being outside spectators.                                                | C6               |
| 3.6<br>3.7 |                                                                          |                  |

### **C.** Course Content

| Introduction: What, Why, How are Computational Methods. Stopping                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria. Accuracy and Precision. Errors: definition, sources, analysis                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                              |
| Root Location:2.a Bracketing Methods: Graphical, Bisection, False Position. Error EstimationAnalysis.2.b Opened Methods: Newton. Secant. Iterative. Convergence and divergenceAnalysis. | 10                                                                                                                                                                                                                                                                                                                                                             |
| <b>Numerical Solution of Linear Systems of Equations</b> : Gauess-Jaccobi<br>Algorithm. Gauess-Seidel Algorithm. Convergence and divergence Analysis.                                   |                                                                                                                                                                                                                                                                                                                                                                |
| Curve Fitting:<br>Empirical Formulae: Selected Points Method, Average Method, Least Square<br>Method.                                                                                   |                                                                                                                                                                                                                                                                                                                                                                |
| Interpolation:<br>Taylor's Polynomial of nth Order and its remainder/error term. Lagrange<br>Polynomial of nth Order and its remainder/error term. The Divided Difference               | 8. 12<br>8. 22<br>2000 10 0000000000000000000000000000                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                         | Algorithm. Gauess-Seidel Algorithm. Convergence and divergence Analysis.<br>Curve Fitting:<br>Empirical Formulae: Selected Points Method, Average Method, Least Square<br>Method.<br>Interpolation:<br>Taylor's Polynomial of nth Order and its remainder/error term. Lagrange<br>Polynomial of nth Order and its remainder/error term. The Divided Difference |

|   | Symbolic Difference Operators. Equidistant Interpolation: One-Side<br>Interpolation,<br>Central Interpolation, and Double-Sided Interpolation.                                                                                                                                                                                    |    |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 6 | Numerical Solutions of ODE:<br>Maclurin's and Taylor's series. The Picard's Methods. The Euler's Methods.<br>Runge-Kutta Methods: of Order 2, of Order 3, of Order 4                                                                                                                                                              | 10 |
| 7 | Numerical Solutions of PDE:<br>Finite Difference Approximation to Partial Derivatives. Formulation of the<br>Finite<br>Difference Techniques for One Dimensional Diffusion Equation: Explicit and<br>Implicit Techniques. Formulation of the Finite Difference Techniques for the<br>Elliptic Equations-Two Dimensional Equation. | 10 |
|   | Total                                                                                                                                                                                                                                                                                                                             | 60 |

### **D.** Teaching and Assessment

### 1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

| Code | Course Learning Outcomes                                                                                                                          | Teaching<br>Strategies                                                                                              | Assessment<br>Methods                                                  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 1.0  | Knowledge                                                                                                                                         |                                                                                                                     |                                                                        |
| 1.1  | Explain the mathematical theory underlying<br>numerical<br>methods for solutions of the concerned<br>problems.                                    | <ul> <li>Direct Teaching:<br/>Lectures,<br/>PowerPoint slides</li> </ul>                                            | <ul> <li>Homework<br/>tasks</li> <li>Quiz</li> </ul>                   |
| 1.2  | Match correctly the appropriate techniques of solutions with the concerned problems.                                                              | <ul> <li>and discussion.</li> <li>Aimed Teaching<br/>Discovery and</li> <li>Midterms</li> <li>Final Exam</li> </ul> |                                                                        |
| 1.3  | Categorizing problems into appropriate complexity classes.                                                                                        | Oral Questions.                                                                                                     | <ul><li>E-learning</li><li>Internet search</li><li>Oral Exam</li></ul> |
| 2.0  | Skills                                                                                                                                            |                                                                                                                     |                                                                        |
| 2.1  | Identify the essential mathematics relevant to computer science                                                                                   | Indirect                                                                                                            |                                                                        |
| 2.2  | Perform error and stability analysis to<br>investigate applicability of<br>numerical methods for solving <b>the</b><br><b>concerned problems.</b> | <b>Teaching:</b><br>Brainstorming -<br>Free Discovery –                                                             | <ul> <li>HW Exercises</li> <li>Lab Exam</li> <li>Oral Exam</li> </ul>  |
| 2.3  | Analyze and evaluate the solution's Efficiency and effectiveness.                                                                                 | Inquiry                                                                                                             | - Presentations                                                        |
| 2.4  | Develop an appropriate numerical scheme.                                                                                                          |                                                                                                                     |                                                                        |
| 3.0  | Competence                                                                                                                                        |                                                                                                                     |                                                                        |
| 3.1  | Illustrate a plan to attack a problem and solve it numerically                                                                                    | Course Project:<br>(Work group)                                                                                     | Introduce group project and case                                       |
| 3.2  | Use the available commercial software<br>systems/packages in<br>application to the suggested solution                                             | critical thinking and<br>ability to seek<br>solutions.                                                              | study approaches<br>to enable students<br>to have an                   |

| Code | Course Learning Outcomes                                                                                 | Teaching<br>Strategies | Assessment<br>Methods         |
|------|----------------------------------------------------------------------------------------------------------|------------------------|-------------------------------|
| 3.3  | Choose suitable algorithms and software to suit specific problems.                                       |                        | experience in problem solving |
| 3.4  | Analyze the solution's sensitivity due to<br>small changes in the problem's<br>parameter.                |                        | situations.                   |
| 3.5  | Cooperative working in groups inside the class, or/and efficient participation in take-home-assignments. |                        |                               |
| 3.6  | Allow them to feel "involved" in the discussion, rather than simply being outside spectators.            |                        |                               |
| 3.7  | Video conferencing is used help the<br>student to skip the fear of<br>scientific interaction.            |                        |                               |

### **2.** Assessment Tasks for Students

| #  | Assessment task*   | Week Due | Percentage of Total<br>Assessment Score |
|----|--------------------|----------|-----------------------------------------|
| 1  | Homework 1         | 2        | 2%                                      |
| 2  | QUIZ 1             | 3        | 5%                                      |
| 3  | Homework 2         | 4        | 2%                                      |
| 4  | QUIZ 2             | 5        | 5%                                      |
| 5  | Midterm 1          | 6        | 10%                                     |
| 6  | Homework 3         | 7        | 2%                                      |
| 7  | QUIZ 3             | 8        | 5%                                      |
| 8  | Homework 4         | 9        | 2%                                      |
| 9  | QUIZ 4             | 10       | 5%                                      |
| 10 | Midterm 2          | 11       | 10%                                     |
| 11 | Project Evaluation | 14       | 12%                                     |
| 12 | Final Exam         | 16       | 40%                                     |

\*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

### E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

- Determine meeting appointments for the weak' students to solve their problems and give them academic advices.
- One office hour daily
- Dealing a workshops.
- Motivate students

### **F. Learning Resources and Facilities**

## **1.Learning Resources**

| Required Textbooks                | ired Textbooks Steven C. Chapra, "Numerical Methods For Engineers", McGraw Hill, 2002.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Essential References<br>Materials | <ol> <li>Richard Hamming, "Numerical Methods for Scientists and<br/>Engineers", Dover Publications, 2nd<br/>Edition, April 25, 2012.</li> <li>Eugene Isaacson, Herbert Bishop Keller; "Analysis of Numerical<br/>Methods"; Dover Publications;<br/>Reprint edition (March 29, 2012) - ASIN: B00CWR4NWK.</li> <li>Richard L. Burden, J. Douglas Faires; "Numerical Analysis";<br/>Cengage Learning; 9th Edition;</li> <li>August 9, 2010; ISBN-10: 0538733519 – ISBN-13: 978-<br/>0538733519</li> <li>Steven C. Chapra, "Numerical Methods For Engineers",<br/>McGraw Hill, 2002</li> </ol> |  |
| Electronic Materials              | https://ep.jhu.edu/programs-and-courses/625.611-computational-<br>methods <ul> <li><u>https://apps.ep.jhu.edu/course-homepages/3518-625.611-computational-methods-sorokina</u></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Other Learning<br>Materials       | Matlab toolboxes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |

# 2. Facilities Required

| Item                                                                                                                      | Resources                           |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Accommodation<br>(Classrooms, laboratories, demonstration<br>rooms/labs, etc.)                                            | Classroom - Laboratory              |
| <b>Technology Resources</b><br>(AV, data show, Smart Board, software,<br>etc.)                                            | Data show – Smart Board             |
| Other Resources<br>(Specify, e.g. if specific laboratory<br>equipment is required, list requirements or<br>attach a list) | Matlab software –Python Programming |

# **G.** Course Quality Evaluation

| Evaluation<br>Areas/Issues                                                                                                          | Evaluators         | Evaluation Methods  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|--|
| <ol> <li>Questionnaires (course evaluation)<br/>filled by the students and acquired<br/>electronically by the University</li> </ol> | Students           | Indirect Assessment |  |
| 2. Students-faculty management meetings                                                                                             |                    |                     |  |
| 3. Departmental internal review of the course.                                                                                      | Department Council | Questionnaires      |  |

| Evaluation<br>Areas/Issues                                                                      | Evaluators                  | Evaluation Methods |  |
|-------------------------------------------------------------------------------------------------|-----------------------------|--------------------|--|
| 4. Discussion with the industrial partners to enhance the courses in order to meet their needs. | Stockholders                | Meetings           |  |
| <ol> <li>5. Midterms and Final Exam</li> <li>6. Project Evaluation</li> </ol>                   | Course Coordinator<br>Staff | Direct Assessment  |  |

**Evaluation areas** (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

**Evaluators** (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

| H. Specification A  | Approval Data      |                       | ι |
|---------------------|--------------------|-----------------------|---|
| Council / Committee | DEPARTMENT COUNCIL | Najmash University    |   |
| Reference No.       |                    | 2 21 21 22            | / |
| Date                |                    | المحسب الألين والطعقة |   |