

Course Specifications

Course Title:	Cryptography and Information Security
Course Code:	CSI 423
Program:	Computer Science and Information Technology
Department:	Computer Science and Information
College:	College of Science
Institution:	Majmaah University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities6	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation7	
H. Specification Approval Data7	

A. Course Identification

1. Credit hours: 3 (3 Lec. + 1 Lab)		
2. Course type		
a. University College Department I Others		
b. Required J Elective		
3. Level/year at which this course is offered: 7 /3		
4. Pre-requisites for this course (if any):		
Design and Analysis of Algorithms (CSI 321)		
5. Co-requisites for this course (if any):		
N/A		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	48	80%
2	Blended	6	10%
3	E-learning	6	10%
4	Distance learning	0	0
5	Other	0	0

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	30
2	Laboratory/Studio	15
3	Tutorial	15
4	Others (specify)	0
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

The aim of this course is to facilitate understanding of the inherent strengths and limitations of cryptography, especially when used as a tool for information security. Armed with this knowledge, student should be able to make more informed decisions when building secure systems. The course covers various aspects of symmetric and asymmetric cryptography. While some topics will be dealt with in more detail, the course will attempt to provide a broad coverage of possibly all the core areas of cryptography. The students will be expected to implement and analyze some simple cryptographic schemes and read various articles. To understand the principles of encryption algorithms; conventional and public key cryptography. To have a detailed knowledge about authentication, hash functions and application level security mechanisms.

2. Course Main Objective

The main course objectives can be outlined in the following points:

1. Develop an understanding of information assurance as practiced in computer systems and network applications.

2. Gain familiarity with prevalent network and distributed system attacks and defenses against them.

3. Develop an understanding of cryptography, how it has evolved, and some key encryption techniques used today.

4. Develop an understanding of security polices (such as authentication, integrity, and confidentiality), as well as protocols to implement such policies in the form of message exchanges.

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge and Understanding	
1.1	Assess the implications of cryptography in terms of privacy, security, and ethical issues.	
1.2	Evaluate and compare encryption standards and techniques.	
1.3	Define the basic terminology, notation, and concepts of computer security.	
2	Skills :	
2.1	Compile, integrate and appraise various methods of encryption information.	
2.2	Measure and determine appropriate encryption standards and techniques to suite specific business and technological needs.	
2.3	Analyze strengths and weaknesses in different systems.	
2.4	Design security protocols and methods to solve specified security problem.	
3	Values:	
3.1	Work cooperatively in a small group environment.	
3.2	Keep your computer safe from different threats.	

C. Course Content

No	List of Topics	
1	Overview: computer security concepts, the OSI security Architecture,	4
1	Security attacks, Security mechanisms, Model of network security.	
C	Classical Encryption Techniques: Symmetric cipher model, substitution	8
2	techniques, Transposition techniques, Rotor machines.	
2	Block ciphers and DES: Block cipher principles, DES, the strength of DES,	8
3	Differential and linear cryptanalysis, Block cipher design principles.	
4	Review of Mathematical concepts: Divisibility, Division algorithm, the	4
	Euclidean algorithm, Modular arithmetic, Groups, rings, fields. Finite Fields.	
5	Advanced Encryption Standard: Finite Field Arithmetic, AES structures, AES	8
Э	transformation, AES key expansion.	
6	Block cipher operation: Multiple and triple DES, ECB, CBC, CFB, OFB,	4
0	Counter, and XTS mode of encryptions.	
7	Review of Number theory concepts: prime numbers, Fermat's and Euler's	4
/	theorem, testing primality, Chinese remainder theorem, Discrete logarithms.	G

8	Public key Cryptography and RSA: principles of public key cryptosystems, The RSA algorithm.	4
9	Other public key cryptosystem: DH scheme, ElGamal cryptosystem	4
10	Cryptographic Hash functions: Applications of Cryptographic hash functions, simple hash functions, SHA-3, Digital signatures. Applications in authentication.	12
	Total	60

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Assess the implications of cryptography in terms of privacy, security, and ethical issues.Lectures Lab demonstrations		Written Exam Homework
1.2	Evaluate and compare encryption standards and techniques.	Case studies Individual	Lab assignments
1.3	Define the basic terminology, notation, and concepts of computer security.	presentations	Quizzes
2.0	Skills	•	•
2.1	Compile, integrate and appraise various methods of encryption information.		
2.2	Measure and determine appropriate encryption standards and techniques to suite specific business and technological needs.	Lectures Lab demonstrations Case studies	Written Exam Homework assignments Lab assignments
2.3	Analyze strengths and weaknesses in different systems.	presentations	Class Activities Quizzes
2.4	Design security protocols and methods to solve specified security problem.	Brainstorming	Observations
3.0	Values		
3.1	Work cooperatively in a small group environment.	Small group discussion Whole group	Observations Homework
3.2 Keep your computer safe from different threats.		discussion Brainstorming Presentation	assignments Lab assignments Class

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	First written mid-term exam	6	15%
2	Second written mid-term exam	12	15%
2	Presentation, class activities, and group	Every	10%
3	discussion	week	
	Homework assignments	After	10%
4		each	
		chapter	

#	Assessment task*	Week Due	Percentage of Total Assessment Score
	Implementation of presented protocols	Every	10%
5		two	
		weeks	
6	Final written exam	16	40%
	Total		100%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

Office hours: Sun: 10-12, Mon. 10-12, Thru. 8-10 Office call: Sun. 12-1 and Wed 12-1 Email: h.haly@mu.edu.sa Mobile: 0538231332

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	W. Stallings, Cryptography and Network Security: Principles and Practice, Prentice Hall, Six Edition. 2013.
Essential References Materials	C. Kaufman, Radia Perlman, Mike Speciner, Network Security, Private Communication in a PublicWorld, Prentice Hall, 2002
Electronic Materials	www.iacr.org
Other Learning Materials	Video and presentation are available with me

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classroom and Labe available at College of science in Zulfi.
Technology Resources (AV, data show, Smart Board, software, etc.)	All resource are available in the halls
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	N/A

G. Course Quality Evaluation

Evaluation Areas/Issues				Evaluators	Evaluation Methods
Effectiveness assessment	of	teaching	and	Students Reviewers	Questionnaires (course evaluation) filled by the
					students and electronically organized by the university.
					Student-faculty and management meetings.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification A	Approval Data	Cat Real
Council / Committee	Dr. Abdelall Alourini	
	Dr. Hassan Aly	التبيينية المجمعة
Reference No.	3441	كنية العلوم بالزنف
Date	27.09.2021	Charles and a start
		3 64